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Introduction 

A variety of genetic abnormalities contribute to the transformation of normal cells into 
aggressively growing cancer cells. Among them, loss of the normal mechanisms of proliferation 
control is the common theme of most human malignancies. 

The cell cycle in mammalian cells is driven by the family of evolutionary conserved 
cyclin-dependent kinases or CDKs (CDK1-8; Morgan, 1995). As cells progress in the cell cycle, 
CDKs are activated and promote further passage from one cell cycle phase to another by 
phosphorylation of critical substrates (reviewed in Draetta, 1990; Morgan, 1995).  CDKs are 
inactive unless associated with the cyclin subunit. So far, eight different types of cychns have 
been identified in human and other higher eukaryotes (cyclins A-H; reviewed in Hunter and Pines, 
1994; Morgan, 1995; Sherr, 1996). Each CDK has a preferential cyclin subunit as a partner; 
however some cyclins have the ability to associate with more than one CDK, creating a large 
number of cyclin/kinase complexes (Morgan, 1995; Sherr, 1996). Different cyclin-CDK 
complexes are activated at distinct points in the cell cycle (reviewed in Sherr, 1993,1996; Sherr and 
Roberts, 1995; Weinberg, 1995). In addition, mammalian CDKs are negatively regulated by the 
diverse family of cyclin-dependent kinase inhibitors or CKIs: pl6ink4/MTSl, pl5ink4b/MTS2, 
p21cipl/WAFl/SDIl(a transcriptional target of p53), p27kipl, p57kip2 and others (reviewed m 
Sherr and Roberts, 1995; Harper and Elledge, 1996). These molecules specifically target CDKs 
important for Gl-S transition: CDK2, CDK4 and CDK6. Finally, CDKs are regulated by positive 
(CAK, or CDK activating kinase) or negative (weel/mikl/mytl) phosphorylation. 
Phosphorylation by the weel family of kinases is reversed by the action of cdc25 phosphatases 
which have a unique specificity toward CDKs (reviewed in Millar and Rüssel, 1992; Draetta and 
Eckstein, 1997). The weel/cdc25 checkpoint was originally described in fission yeast (Russell and 
Nurse, 1986) and later shown to represent a universal element of the cell cycle control (Rüssel, 
Moreno and Reed, 1989; Sadhu et al., 1990; Galaktionov and Beach, 1991). All CDKs (with the 
exception of cdk7) contain a conserved tyrosine and in the majority of CDKs, a neighboring 
threonine residue, targeted by the weel family of kinases (Gu et al, 1992; Parker et al., 1992; 
Mueller et al, 1995; Terada et al., 1995; Iavarone and Massague, 1997). Phosphorylation of a 
kinase on either or both of these residues renders it completely inactive. In human cells, there are 
three known cdk-activating phosphatases, cdc25A, B and C (Sadhu et al., 1990; Galaktionov and 
Beach, 1991). . .   „ 

Transformation of the normal human cell into an aggressively growing tumor cell typically 
requires a series of loss of function mutations in tumor supressor genes and gain of function 
mutations in oncogenes. Gain of function by gene amplification has been described for c-myc and 
cyclin Dl in several human tumors, including breast cancer. Cyclin Dl amplification is; detected in 
13% of breast cancers but more than 50% appear to overexpress the protein (Sherr, 1996). 
Targeted overexpression of cyclin Dl in mammary epithelial cells leads to hyperprohferation and 
eventual tumor formation (Wangetal., 1994). . 

We have shown that cdc25A and cdc25B phosphatases are overexpressed in a significant 
portion of primary breast cancer (Galaktionov et al., 1995; Galaktionov, Chen and Beach, 1996). 
This overexpression might be explained in part by the action of c-myc, which is amplified in 
20-30% of breast cancers, and functions in part as a transcription factor for cdc25A (Galaktionov, 
Chen and Beach, ibid.). Overexpression of cdc25A and cdc25B is now described in other types ot 
human cancer as well (Gasparotto et al, 1997). Ectopic expression of cdc25A in TGFß-sensitive 
breast cancer cell lines renders them insensitive to the inhibitory action of this cytokine (Iavarone 
and Massague, 1997). As a result, cells constitutively overexpressing cdc25 phosphatases might 
be partially or completely insensitive to the action of TGFß, especially when the pl5ink4b/mts2 
(CDK4/CDK6 inhibitor, activated by TGFb) locus is inactivated by deletion. Inability ot cells 
overexpressing cdc25 to arrest in response to negative regulatory stimuli might contribute to 
abnormal cell proliferation and eventually tumor formation. 
The broad aim of this proposal is to investigate how perturbation of the CDK tyrosine 

phosphorylation checkpoint might contribute to the oncogenic transformation process. 



Body 

Cdc25A and cell immortalization. 
As proposed in Taskl, we prepared recombinant retroviruses expressing each of the three 
human cdc25 genes: cdc25A, cdc25B and cdc25C (Sadhu et al., 1990; Galaktionov et al, 1991). 
We used pB ABE-based retroviruses since these are stable retroviral vectors and we have had 
previous experience working with them (Galaktionov et al, 1996). To show whether the 
phosphatase function of cdc25 is required, we also prepared a catalytically inactive cdc25A by 
substituting Ser for Cys in the catalytic center of cdc25 A. The ensuing titers of these viruses 
exceed 105 per ml after transient transfection into BOSC or BING cells obtained from ATCC. 
Mammary epithelial cells (HMEC) were obtained at passage 12 from D. Beach, Cold Spring 
Harbor Laboratory. Using freshly prepared retroviral stocks we were able to achieve infection 
rates between 10 and 40 percent routinely. This enabled us to use large infected populations 
without relying on single cell clones in our analysis of the potential role of cdc25 phosphatases as 
immortalizing agents. Infected HMECs were adjusted to the same cell count after drug selection, 
and growth was continued with periodic cell culture split. HMECs have a finite life span and 
usually exhaust their proliferation ability at about passage 20. We infected HMECs at passage 14 
and counted ensuing population doublings (PDL). Control HMECs underwent only 4-5 PDLs 
from the point of infection before they arrested with the typical senescent cell morphology. In 
contrast, cells expressing cdc25 A and cdc25B phosphatases continued beyond this point for 6-8 

additional population doublings to total of 12-13 (Figure 
6). 

Figure 6.   Life span extension by ectopic expression 
of cdc25 proteins. Cdc25 A, cdc25B and cdc25C, 
inactive cdc25A(C428S) proteins were expressed in 
normal human mammary epithelial cells infected with 
recombinant retroviruses. 

We have performed these experiments three   times 
and we are confident that cdc25 phosphatases did in fact 
extend the HMEC life span. The effect was most 
prominent with cdc25A and cdc25B phosphatases. 
Cdc25C phosphatase had less effect on HMEC life span. 
Experiments with catalytically inactive cdc25A(C482S, 
Figure 6) show that phosphatase activity of cdc25 A is 
essential for the life span extension. Expression of 

Lcatalytically inactive cdc25A does not cause any cell cycle 
arrest in HMEC, as they progress similarly to cells infected with the control retrovirus 
(pBABEpuro, Figure 6). 

We had shown previously that a combination of oncogenic ras and cdc25A causes oncogenic 
transformation in rodent cells. These observations together with the experiments described here 
prompted us to investigate whether oncogenic rasV12 will affect the ability of cdc25A to cause lite 
span extension in human HMEC cells. At first, we extended experiments of Serrano et al., 1997, 
who observed that oncogenic ras causes a paradoxical reaction in normal fibroblasts, resulting in a 
cell cycle arrest with some evidence of the premature cell senescence (Serrano et al., ibid.). The 
cell cycle arrest caused by the ectopic expression of rasV12 requires the wild type p53 protein and 
is mediated at least in part by the pl9ARF, encoded by the alternative reading frame of the INK4a 
locus (reviewed in Sherr, 1998). HMEC displays a similar phenotype as they enter the cell cycle 
arrest a few days after infection with pBABEpuro retrovirus expressing rasV12. The senescence 
phenotype was confirmed by the cell morphology (flat enlarged cells with no cell division in more 
than 2 weeks) and staining for the senescence-specific b-galactosidase activity (Dimn et al., lyyD). 



Interestingly, co-expression of cdc25A or cdc25B together with rasV12 rescued HMEC cells from 
 premature senescence caused by rasV12 (Figure 7). 
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Figure 7.   Life span extension by ectopic expression 
of cdc25A, in cooperation with rasV12 and rafl(BXB) 
proteins.   Cdc25 A, phosphatase-"dead" cdc25A 
(C482S), rasV12, and rafl(BXB) proteins were 
expressed in normal human mammary epithelial cells 
infected with recombinant retroviruses.   Note that 
rasV12 and rafl (BXB) cause a premature onset of 
senescence. 

Because the raf/MEK/MAP kinase signaling cascade is a key effector of signaling from ras 
proteins, we examined the ability of rafl kinase to affect HMEC cells. We observed that 
constitutively active rafl kinase (BXB) was able to elicit cell cycle arrest and senescence (Figure 
7). We wished to test whether cdc25A can reverse this arrest by co-expressing constitutively 
active rafl and cdc25A. We observed that cell senescence  caused by rafl in HMEC cells was 
reversed by the action of cdc25A protein (Figure7). Cells expressing both cdc25A and rafl 
progress further in their life span than cdc25A alone. Interestingly, our experiments also shown 
that the cdc25A reversal of the cell cycle arrest caused by rafl does not require the phosphatase 
activity of cdc25A, but the subsequent bypass of the normal life span does (Figure 7). 
Experiments addressing further the mechanism of how cdc25A bypass the cell cycle arrest elicited 
in normal human cells by ras and rafl are described in the Experimental Design Section. 

Activation of telomerase activity is often associated with the so-called M2 checkpoint, 
positively correlating with cell immortalization. A product of the oncogenic papilloma virus, E6, 
has been shown to activate telomerase activity but does not immortalize normal human mammary 
epithelial cells (Klingelhutz et al., 1996). As proposed in Taskl,we investigated whether this 
extension of the HMEC life span by cdc25 is associated with TGFß resistance and activation of 
telomerase activity. To measure telomerase activity we used telomeric repeat amplification protocol 

. (TRAP; Kim and Wu, 1997). As little as 1% telomerase-positive cells were detected by this 
method in a population of HMECs infected with retrovirus expressing the E6 gene product 
(Klingelhutz et al, ibid.). It has been shown recently that telomerase activity was not essential for 
establishment of immortal cell lines and growth of tumors in mice (Blasco et al., 1997), therefore 
we do not necessarily expect that presence or absence of telomerase activity will represent a 
conclusion for our experiments, but rather another measurable parameter in addition to PDLs. The 
recent literature (Bodnar et al., 1998), however, suggests that, in some types of human cells, 
ectopic expression of the catalytic telomerase subunit caused significant extension of the life span. 
It is possible that the contradiction between data obtained in mouse and human cells is due to 
species specificity and that telomerase activation is required for immortalization of the human cells. 
Our experiments shows that telomerase is not activated by cdc25a expression in normal human 
cells. 

2. Role of weel kinases in establishment of the cellular senescence program 

As proposed in task2, we performed low stringency PCR using degenerate oligonucleotides in 
order to clone putative wee 1 homolog(s) with specificity toward cdk4 and cdk6 kinases. As a 
result, we obtain one sequence with significant sequence homology with known weel gene family 
members. However, this sequence seems to be expressed at very low levels in a majority of human 
tissues and cell lines and we are currently pursuing its cloning from several cDNA libraries. Low 



representation of this clone so far prevented us from isolating a full length clone. As proposed 
in task2, we performed a two-hybrid screen using modified cdck4 protein. We are currently 
analysing cDMNAs obtained in that screen by sequencing. So far, we have not identified a putative 
weel family member. As proposed in task2, we also started an attempt of biochemical 
purification of weel kinase, specific for cdk4. To that extent we have prepared a cellular extract 
from Hela cells and are currently characterising fractions obtained by anion exchange 
chromatography on FPLC trying first to identify the appropriate activity. This is a long term project 
and we don't expect a rapid progress here. 

CONCLUSIONS 

1. Cdc25 phosphatases expand the life span of normal mammary epithelial cells (HMEC). 
2. Cdc25 phoshatases did not cause complete immortalization of HMEC 
3. Phosphatase activity of cdc25A is required for the observed phenotype. 
4. Cdc25 did not cause activation of telomerase in HMEC. 
5. Cdc25A cooperated with RasVall2 to further expand their lifespan and reverse senescent 
phenotype caused by RasV12 in HMEC. 
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